

Effects of temporary grassland introduction into annual crop rotations and nitrogen fertilisation on forage production and earthworm communities

INRA

Kevin Hoeffner^{1,2}, Hoël Hotte¹, Daniel Cluzeau¹, Xavier Charrier³, François Gastal³, Guénola Pérès²

Introduction

¹ University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
² UMR SAS, INRAE, Institut agro Rennes-Angers, Rennes, France
³ UE FERLUS, INRAE, 86600 Lusignan, France

Earthworms contribute to a wide range of ecosystem services, especially valuable in croplands (Bertrand et al. 2015). Nevertheless, crop management can strongly modify earthworm communities. Earthworms functional role is known at the level of four ecological categories (Bouché 1977; Larsen et al. 2016), epigeics: live and feed on surface litter or animals dungs; endogeics: live in horizontal burrows and feed on soil organic matter; Lumbricus anecics: live in few vertical burrows and feed on surface litter, Aporrectodea anecics: live in several sub-vertical burrows and feed on soil organic matter. The development of earthworm communities is highly dependent on ecological categories and the species that compose them (Satchell 1980; Butt 1993). Most studies focusing on the impact of agricultural practices on earthworm communities are related to soil tillage, fertilisation or pesticides, while the effect of temporary grassland introduction into a crop rotations remains largely unknown. In this context, the aim of the present study was to determine the effects of grassland presence and duration in a crop rotation,

as well as grassland fertilisation, on earthworm communities.

Materials & methods

Long Term Observatory in Lusignan, France

4 treatments

Forage production and composition

In 2010, grass was cut three times during the year. Above-ground biomass was estimated by cutting an area of 1.5 x 5.0 m with an experimental harvester (Haldrup, Germany). Grass was dried in an oven at 70°C and weighed to determine dry matter content. It was then ground for chemical

- Fertilised annual crop rotation, AC (grain maize, wheat, barley)
- 3-year-old grassland, highly fertilised (230 kg ha-1), G3N+
- 6-year-old grassland, highly fertilised (230 kg ha-1), G6N+
- 6-year-old grassland, lowly fertilised (30 kg ha-1), G6N-

The four treatments were replicated in four blocks

	2005	6	7	8	9	10	11	_
AC	<mark>. c1</mark>	c2	c3	c1	c2	c3	c1	
G3N+	<mark>. c1</mark>	c2	c3	1	2	3	i c1	Earthworm sampling i
G6N+	1	2	3	4	5	6	c1	march 201
G6N-	1	2	3	4	5	6	I C1	
			-		-			

Crops and grass were sown after ploughing. Grain maize was sown in April and harvested in October, and its residue was crushed and left on the soil surface. Wheat was sown in October and harvested in July. Barley was sown in November and harvested in July; after barley harvest, soil remained bare until maize was sown in March. The straw of wheat and barley was exported. Grass was sown in November and cut three or four times per year (depending on its productivity). Grasslands were sawn as a mixture of *Lolium perenne* cv. Milca, Festuca arundinacea cv. Soni and Dactylis glomerata cv. Ludac.

analysis. Total N and C concentrations were determined by the Dumas method using an elemental analyser (Carlo Erba EA 1108).

Earthworm sampling and laboratory analyses

Earthworms were sampled in march 2011 according to the ISO 23611-1 modified according to Pérès et al. (2010). It combines chemical with physical extraction. In each plot, earthworms were sampled at three different locations spaced more than 10 m apart and at least 10 m from the edge. Each earthworms sampling consisted in applying three watering of 10 L with an increasing concentration of formaldehyde (0.08%, 0.08% and 0.12%) on one square meter. After earthworm collection, to recover earthworms unable to reach the surface, a block of soil (25 x 25 x 20 cm) was hand-sorted inside the sample square corresponding to a surface of 1/16 square meter.

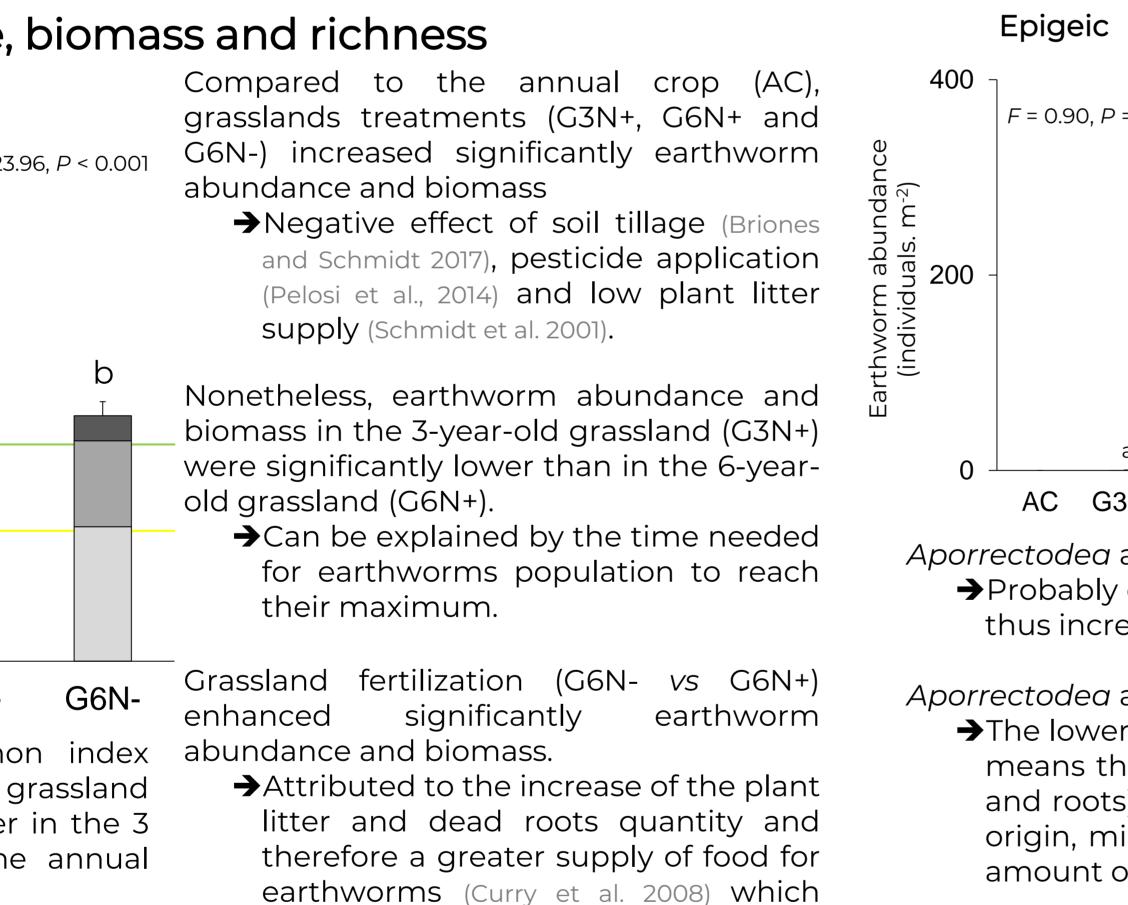
Statistical analysis

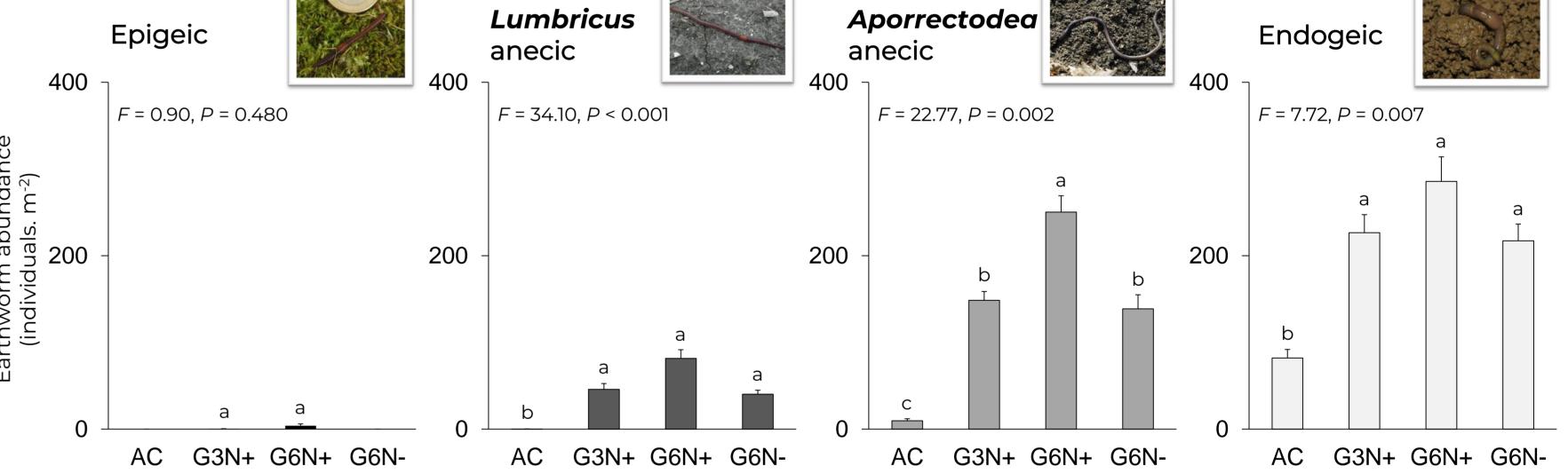
We first used linear mixed-effects models, followed by Tukey HSD tests for post hoc pairwise comparisons, to test effects of the four treatments (annual crop, highly fertilised 3- and 6-year-old grassland and lightly fertilised 6-year-old grassland) on each earthworm community parameter. To account for pseudo-replication, the random part of the model specified that earthworm samplings were nested within blocks. We then used separate one-way ANOVAs, followed by Tukey HSD tests for post hoc pairwise comparisons, to assess differences in forage production and composition (C and N) between the treatments.

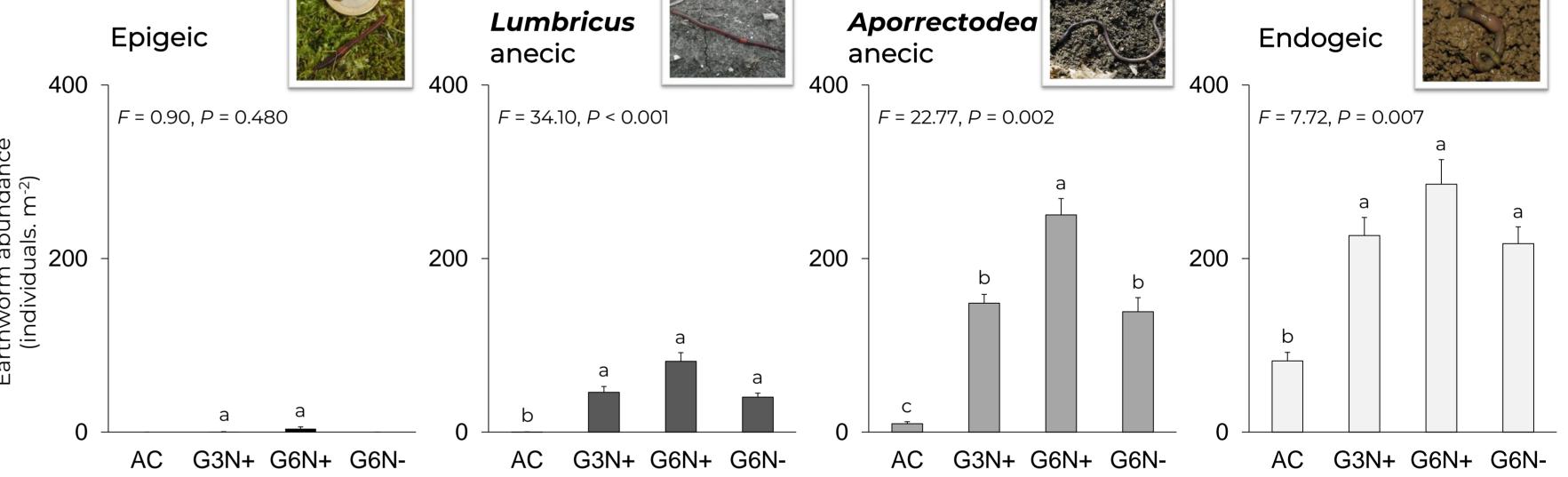
Forage production and composition

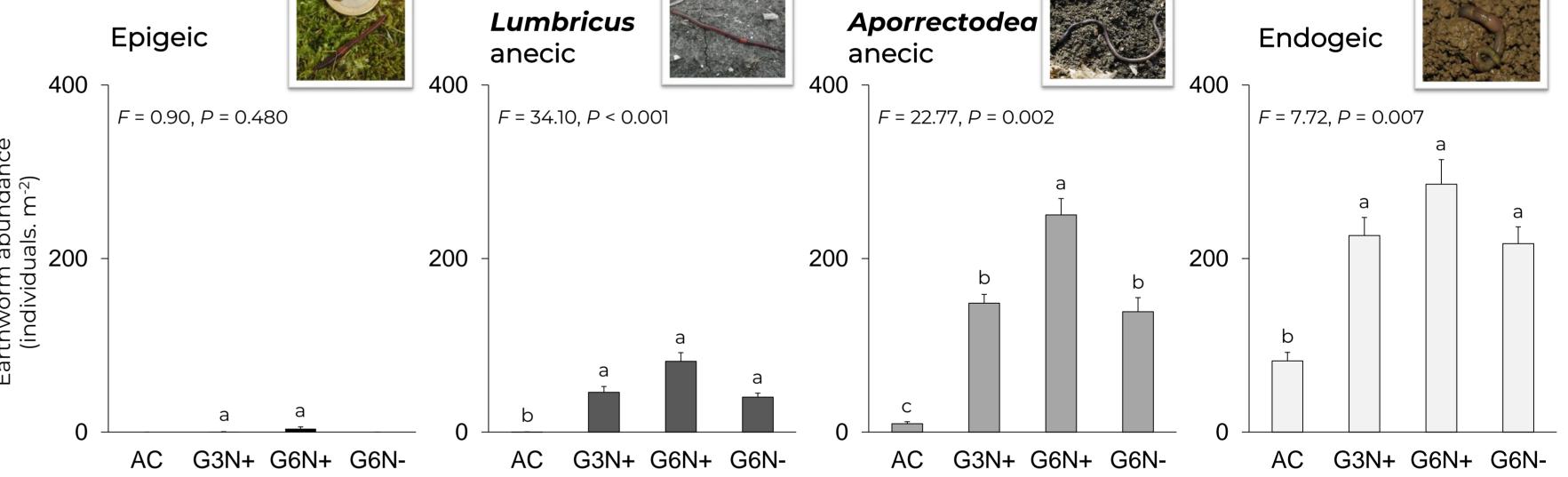
Forage production and composition (C and N) were not significantly different between the highly fertilised grasslands (G3N+ and G6N+). Nonetheless, forage production was significantly higher in the highly (G6N+) than in the lightly fertilised 6-year-old grassland (G6N-) but without any difference in term of composition (C and N).

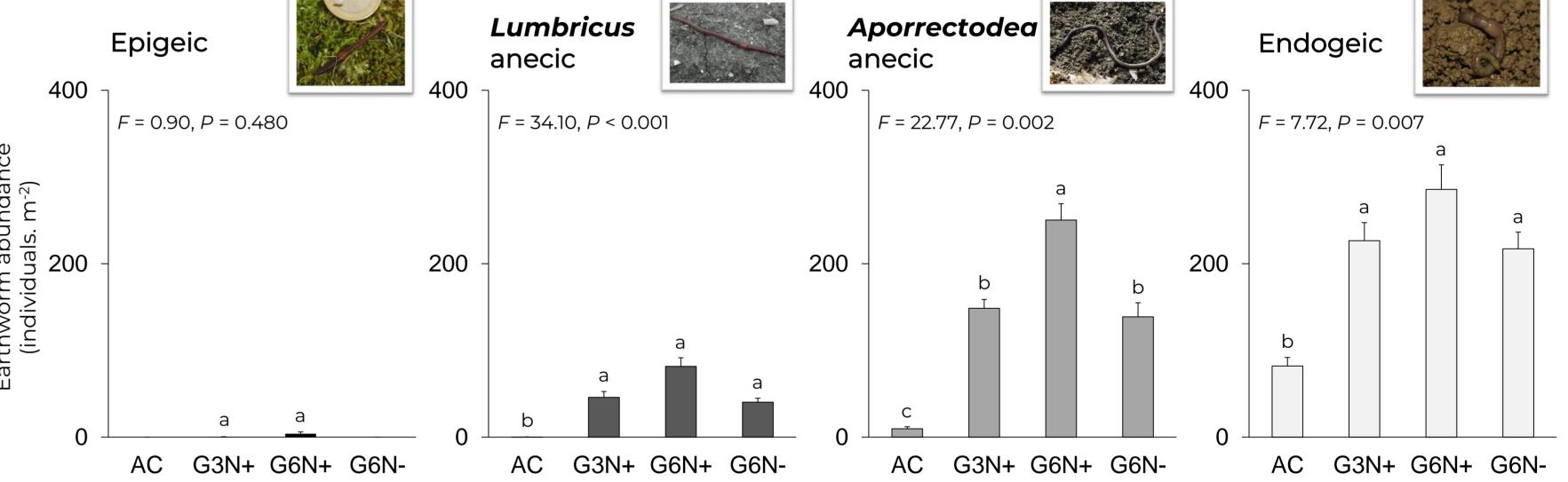
	G3N+	G6N+	G6N-	
Forage production (t DMY ha-1)	5.37ª (±0.21)	5.50 ^a (±0.35)	1.69 ^b (±0,07)	F = 80.01, P < 0.001
Carbon (mg/g)	434.5 ^a (±0.7)	432,9ª (±1.3)	431.0 ^a (±1.8)	F = 0.78, P = 0.489
Nitrogen (mg/g)	27.1 ^a (±1.7)	25.3 ^a (±2.2)	22.4 ^a (±1.6)	F = 0.88, P = 0.448

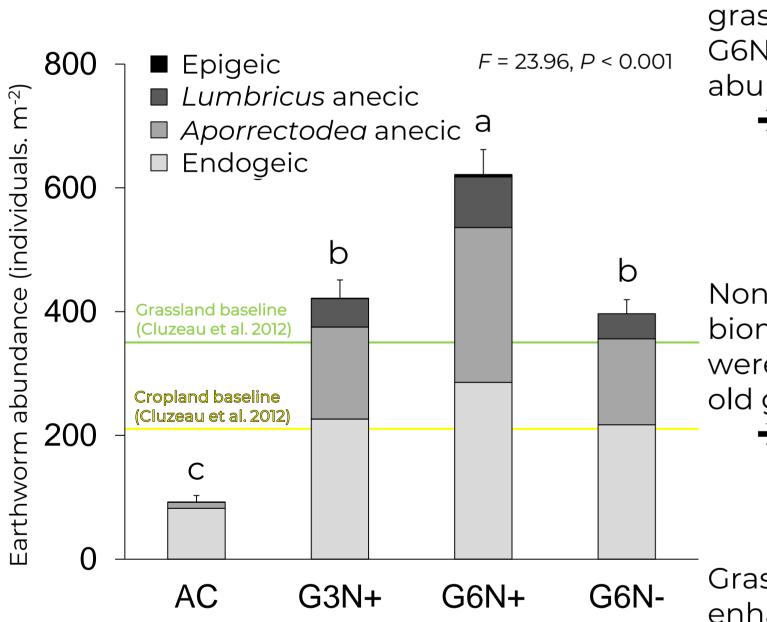

Earthworm abundance, biomass and richness


Earthworm ecological categories


Regardless of the treatments, endogeic were the most abundant and epigeic earthworms were the least abundant.


→ Commonly observed in agricultural soils (Cluzeau et al., 2012).


Epigeic was dominated by Lumbricus castaneus, Lumbricus anecic by Lumbricus centralis, Aporrectodea anecic by Aporrectodea longa longa and endogeic by Allolobophora chlorotica chlorotica and Aporrectodea caliginosa caliginosa. Epigeic earthworms were represented only by L. castaneus in highly fertilised grasslands (G3N+ and G6N+) and absent in the other treatments



Earthworm richness and Shannon index were not different between the 3 grassland treatments but significantly higher in the 3 grassland treatments than in the annual crop.

In particular due to the presence of Aporrectodea giardi, Ethnodrilus zajonci Octolasion cyaneum species in and grassland.

Aporrectodea anecic abundance enhanced by grassland duration (G3N+ vs G6N+)

→ Probably due to their slower growth rate than Lumbricus anecic or endogeic earthworms (Satchell 1980; Butt 1993) thus increasing the required time to reach their maximum population.

Aporrectodea anecic abundance enhanced by mineral fertilisation (G6N- vs G6N+).

→The lower Aporrectodea anecic abundance and biomass in lightly than in highly fertilised 6-year-old grassland means that the development of these populations has been constrained by a lower food supply (plant litter and roots). Aporrectodea anecic earthworms ingest a mixture of degraded organic matter mainly from plant origin, microorganisms and soil mineral fraction (Schmidt et al. 1999; Larsen et al. 2016). Thus, it is possible that the amount of soil organic matter was lower in the lightly fertilised grassland.

Aporrectoded anecic earthworms with their higher burrow network than Lumbricus anecic earthworms (Bastardie et al. 2003) allow a better soil water flux. Thus, grassland duration and fertilisation could have significant consequences on soil functioning.

grassland.

was confirmed by the

production 3.3 higher in the highly

than in the lighly fertilised 6-year-old

forage

Grassland introduction into a crop rotation significantly increases earthworm abundance, biomass and species in repacked scores. Applied Soil Ecology 24:3-16 cores. Applied Soil Ecology 24:3–16 Bertrand M, Barot S, Blouin M, et al (2015) Earthworm services for cropping systems. A review. Agron Sustain Dev 35:553–567 richness. It also improves the functional structure, especially for Lumbricus and Aporrectodea anecic Bouché MB (1977) Strategies lombriciennes. Ecological Bulletins 25:122–132 Briones MJI, Schmidt O (2017) Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global metaearthworms. analysis. Glob Change Biol 23:4396–4419

Grassland duration (G3N+ vs G6N+) and fertilisation (G6N+ vs G6N-) increase earthworm abundance and biomass and are beneficial for Aporrectodea anecic, without affecting Lumbricus anecic earthworms.

3 years of highly fertilised grassland into a crop rotation seems to be a good compromise between grassland duration and fertilisation because it (i) significantly increases earthworm abundance and improve the functional structure and (ii) leads to the same forage production as 6 years of highly fertilized grassland.

Butt KR (1993) Reproduction and growth of three deep-burrowing earthworms (Lumbricidae) in laboratory culture in order to assess production for soil restoration Biol Fert Soils 16:135–138

Cluzeau D, Guernion M, Chaussod R, et al (2012) Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types. European Journal of Soil Biology 49:63–72

Curry JP, Doherty P, Purvis G, Schmidt O (2008) Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland Applied Soil Ecology 39:58–64

Larsen T, Pollierer MM, Holmstrup M, et al (2016) Substantial nutritional contribution of bacterial amino acids to earthworms and enchytraeids: A case study from organic grasslands. Soil Biology and Biochemistry 99:21–27

Pelosi C, Barot S, Capowiez Y, et al (2014) Pesticides and earthworms. A review. Agronomy for Sustainable Development 34:199–228

Pérès G, Bellido A, Curmi P, et al (2010) Relationships between earthworm communities and burrow numbers under different land use systems. Pedobiologia 54:37-44 Satchell JE (1980) "R" Worms and "K" worms: A basis for classifying lumbricid earthworm strategies. In: Dindal DL (ed) Soil biology as related to land use practices. EPA Washington, pp 848-864

Schmidt O (1999) Intrapopulation variation in carbon and nitrogen stable isotope ratios in the earthworm Aporrectodea longa. Ecological Research 14:317–328 Schmidt O, Curry JP, Hackett RA, et al (2001) Earthworm communities in conventional wheat monocropping and low-input wheat-clover intercropping systems. Annals of Applied Biology 138:377–388

